展示全部
已經跨越了以阿貝衍射極限為代表的一度難以逾越的分辨率障礙 ,開發多種成功的方法,如受激發射損耗(STED) 、單分子定位方法(PALM 和 STORM) ,結構照明顯微術(SIM)和超分辨率光學波動成像(SOFI),這要歸功于圖像傳感器技術的改進以及單分子光譜學的巨大進步。在這里,我們提出了一種新的顯微技術,它利用 SPAD23陣列探測器的較高時間分辨率來測量熒光波動引起的相關性。在 ISM 架構中測量的這種相關性,然后被用作具有高達 4倍增強橫向分辨率和增強軸向分辨率的超分辨率圖像的對比度。僅用幾毫秒的像素駐留時間就可以獲得高信噪比的超分辨率圖像。單光子探測器陣列SPAD23技術源于代爾夫特 ...
一種試圖克服阿貝衍射極限的方法,通過使用納米級纖維探針將光限制在一個小區域內,允許在亞波長尺度上進行地形和光學成像。由于這個原因,NSOM已被證明是一種有用的技術,不僅用于生物學目的,而且用于表征半導體等不同材料。在這種類型的顯微鏡中,光通過探針傳遞或收集,該探針可以具有懸臂結構或纖維探針的結構。此外,探頭可以在光圈或無光圈模式下工作。在無孔徑模式下,AFM(原子力顯微鏡)探針被涂上一層金屬,以增強靠近其尖端的樣品部分的電磁場,并與放置在遠場的外部光源結合使用以進行照明(圖1)。圖1 :無光圈NSOM結構示意圖。外部光源照亮靠近懸臂頂端的部分樣品。散射回來的光被物鏡收集起來。另一方面,在孔徑模 ...
或 投遞簡歷至: hr@auniontech.com