。這已經在高數值孔徑顯微鏡系統、定位顯微鏡中實現,并用于提高STED激光聚焦的質量。三、PSF應用對液晶空間光調制器的要求1.光利用率對于這個應用來說,SLM將光學損失降到最低是很重要的。PSF工程使用SLM來操縱顯微鏡發射路徑上的波前。在不增加損失的情況下,熒光成像中缺乏信號。使用具有高填充系數的SLM可以最大限度地減少衍射的損失。Meadowlark公司能提供標速版95.6%的空間光調制器,分辨率達1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。鍍介電膜版本的SLM反射率可以做到100%,一級 ...
中紅外激光治療傳輸接頭設計Refer:Anwer, Atif & Ali, Syed Saad & Meriaudeau, Fabrice. (2016). Underwater online 3D mapping and scene reconstruction using low cost kinect RGB-D sensor. 1-6. 10.1109/ICIAS.2016.7824132.上圖是水分子在10nm-10mm波段間的吸收峰圖。從該圖中可以看到,近紅外到中紅外波段,在3um附近,水分子對于光能量有強烈的吸收,這可能和水分子的振轉結構有關系。借助3um波段的水 ...
極限(使用高數值孔徑物鏡的激發波長的大約一半)決定的。因此,在現代微拉曼裝置中,當使用可見范圍內的較短激發波長時,可以實現的較小探測尺寸約為200 nm。然而一些因素,如非理想光學通常導致SR接近半微米或更高。一般來說,有幾種方法可以用來增強拉曼信號。直接的方法是將激發波長調諧為被探測材料的一個光學躍遷能(主要是光學帶隙),也被稱為共振拉曼散射(RRS)。在那里,由于強光學吸收,拉曼散射信號可以增強幾個(通常是兩個)數量級。此外,由于振動和電子運動的相互作用改變了拉曼選擇規則,可能會出現新的聲子模式,而這些模式在非共振拉曼光譜中是不存在的。有趣的是,由于強烈的激子效應,RRS在二維半導體中起著 ...
400μm、數值孔徑為0.22的光纖耦合,通過調節LD的溫度獲得LD的中心輸出波長。來自LD的泵浦激光通過準直和聚焦透鏡重新聚焦在激光晶體的兩個端面上,準直和聚焦透鏡的焦距分別為35 mm(準直透鏡)和75 mm(聚焦透鏡)。泵浦點(直徑 857.1 μm)放置在 Tm,Ho:YAP 晶體的輸入表面。在1.9–2.2 μm 處涂有30%(5%、7%、10%、20%、25%、30% 和 35%)透射率的平面鏡是激光器的輸出耦合器 (OC)。曲率半徑為 300 mm 的平凹鏡 (M2) 在 790-798 nm 處鍍有高透射率 (T > 98.0%) 鍍膜,兩面鍍膜為 1.9-2.2 μm凹 ...
與入瞳直徑或數值孔徑有關,受像差影響很小,所以分辨率不適宜用來評價高質量的小像差系統的像差。對于大像差系統,分辨率作為的像質指標有時也不甚適宜。因為像差主要導致能量分散,直接影響線條的清晰度,對分辨率的影響則并不顯著。因分辨率與成像清晰度之間并無必然的聯系。此外,實際檢驗條件常與瑞利原始條件不符,使瑞利規定的分辨率不能很好地反映光學系統的質量。首先,各種光能接收器分辨亮度對比度的能力有差別,如人眼在照度良好、界線清楚的情況下能分辨1∶0.95的亮度差別;其次,瑞利的規定是對兩個相等亮度的自身發光點而言的,并且除兩個發光點外是沒有背景亮度的,這也往往與實際情況不符。所以分辨率是一個不很確定的量, ...
IRF物鏡的數值孔徑都比較大,會有比較好的光子收集效率。(7)EMCCD或sCMOS相機。相機要在可見光范圍內有較高的量子效率、較高的幀速、較低的噪聲。圖2.PALM成像效果蛋白的激活和漂白通常需要多種窄線寬激光器。法國Oxxius激光器生產廠商則提供了這樣的合束激光器解決方案,專門為生物視覺領域設計。更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳感、激光制造等;可為客戶提供完整的設備安裝,培訓, ...
,可以使用高數值孔徑(NA)的水浸或油浸物鏡。然后,光在前向被收集并重新聚焦到光電探測器上。為了確保收集效率,建議使用油浸式物鏡。在本案例中,使用了一個60X 1.2 NA的水浸式物鏡(UPLSASP 60XW,奧林巴斯)。一旦光線被聚光器收集,在經過光學過濾器阻擋調制光束后,它就被重新聚焦到光電二極管上。來自光電二極管的信號然后被送到鎖相放大器(根據光電二極管的配置,可能需要一個前置放大器/跨阻抗放大器)。鎖相放大器將信號與本地振蕩器混合,并將調制頻率的交流信號轉換為直流輸出。然后,它被送到數據采集系統,形成圖像。在這個應用中,Hamamatsu S3994-01與一個自制的跨阻抗放大器配對 ...
的光學參數是數值孔徑和倍率,它影響系統的分辨率、像面照度和成像質量。數值孔徑定義為顯微物鏡物方介質的折射率 n 和物方孔徑角正弦之乘積,用符號 NA來表示,即(1) 顯微物鏡的分辨率δ顯微物鏡的分辨率是以它能夠分辨開兩點的較小距離δ來表示的,計算公式為:當被觀察體本身不發光,需要其他照明光源時,隨照明條件的不同,計算公式將有所變化。根據阿貝的研究,對物體進行斜人射照明時,較小分辨率為:由以上公式可見,對于一定波長的單色光,在像差校正良好的情況下,顯微鏡的分辨率完全曲物鏡的數值孔徑決定。數值孔徑越大,分辨率越高。當物方介質為空氣時,物鏡較大的數值孔徑為 1,一般只有 0.9 左右。而在物體和物鏡 ...
率和0.55數值孔徑(NA)的保偏尼康LU-Plan EL WD物鏡聚焦。這允許一個≈10毫米的高工作距離,這是必要的,由于空間限制,第二個相等的物鏡使光再次平行。在法拉第幾何中,第二個物鏡被放置在樣品的后面。反射光的偏振變化通常低于0.1?,因此需要高靈敏度的檢測機制。這是通過平衡光橋檢測,其中包括一個沃拉斯頓棱鏡和兩個光電二極管。這兩個信號進一步數字化,并與鎖相放大器相減。在極面和法拉第幾何中,磁場是由一個圍繞物鏡的線圈提供的。每個極面鞋上都有一個小孔,可以透射聚焦的光。它們對樣品上激光光斑周圍200 μm范圍內的面外場強的影響約為1%,因此對于我們的目的可以忽略不計。由于在目標位置的磁場 ...
倍率為60,數值孔徑為0.70,工作距離約為2.5 mm。為了在切割邊緣平面上獲得盡可能小的激光光斑直徑,必須確保顯微鏡物鏡的整個孔徑均勻照射。因此,光束在離開二極管激光器后用望遠鏡加寬。樣品上的光強可以借助中性密度濾光輪來控制。測量時使用的探測激光功率約為10μW。激光在到達樣品之前被格蘭-湯普森棱鏡線偏振。光從樣品表面反射后,偏振面旋轉克爾角θK,用沃拉斯頓棱鏡將反射光分成兩束正交偏振光束,用差分放大器測量相應的光強差來檢測。該差分信號與克爾角成正比,因此也與砷化鎵導帶中的自旋極化成正比。鐵磁觸點的磁化以及GaAs中的自旋系綜可以用兩個電磁鐵來操縱,這兩個電磁鐵位于低溫恒溫器外部,樣品位于 ...
或 投遞簡歷至: hr@auniontech.com