通常,拉曼散射和遠紅外漫反射光譜被用于測試固體物質的晶格能的振動特性,可幫助我們從微觀的角度來分析其微觀特性,并且在固有屬性和結構-性質規則方面提供更多的創新視角。拉曼光譜通過使用XperRam Compact(Nanobase)光譜儀在室溫下進行測試,所用激發光源為633nm。NMS陶瓷晶體的拉曼散射光譜如圖1所示,圖1(a)所示樣品的拉曼峰都很相似,基線都很平坦,并且振動峰都很尖銳。根據群論分析結果,空間群為P21/n的晶體應該有24個拉曼有源振動模式(12Ag+12Bg)。然而,在實際的拉曼峰中,只有12個峰被檢測到,這是因為拉曼有源峰的疊加以及設備分辨率的影響。在100-270cm-1 ...
受激拉曼散射顯微鏡Moku:Lab 鎖相放大器的使用拉曼現象由印度科學家C.V. 拉曼于1920 年代發現1, 2。如今,拉曼光譜已成為廣泛使用的探知分子振動模式的方法3,4。與其他分析化學方法相比,光譜方法可以提供很高的空間分辨率,探測裝置無需與樣品相接觸。分子振動光譜提供了相對較高的化學特異性,且不需要額外的標記。然而,自發拉曼現象是一個非常弱的散射現象。如果直接使用自發拉曼進行成像或者顯微研究,一張圖可能需要幾小時的采集時間。因此,相干拉曼方法,如受激拉曼散射如今被廣泛的應用于顯微鏡研究。在這個應用指南中,我們將講述如何使用Moku:Lab的鎖相放大器進行受激拉曼散射的信號探測。背景介紹 ...
歸因于布里淵散射。布里淵散射是由黑磷中的面內各向異性引起的雙折射引起的反射探測光束和黑磷樣品內部的聲波之間的相互作用引起的。這些振蕩也通過校正減法抵消[注意,圖2(a)中的校正信號是平滑的,沒有振蕩]。這種方法使得TR-MOKE測溫法不容易出錯,因為任何與傳感器磁化狀態無關的雜散信號都可以被抵消。圖2. 使用9兆赫調制頻率和w0=12 μm的激光光斑尺寸在涂覆有26.9納米厚的三丁基錫化合物層的黑磷樣品上測量的TR-MOKE信號的例子。(a)作為延遲時間函數的正(M+)、負(M)和校正的vin信號。插圖顯示了前幾百ps時出現的周期為21 ps的布里淵散射振蕩。這些振蕩在校正后的Vin中被抵消。 ...
金屬膠體納米顆粒由于穩定性高、大小可調、光學性能獨特和生物相容性被廣泛用于超靈敏檢測探針,尤其在SERS中,分子的拉曼信號增加108。基于SERS的實驗有單分子水平靈敏度、分子特異性和減少光漂白的優勢。許多基于納米顆粒的金屬探針被用來檢DNA,RNA,蛋白質,病原體,癌細胞和化學物質,然而很少有報道使用SERS探針直接檢測病毒。本文報道了通過SERS抗體探針簡便靈敏地檢測流感病毒。通過免疫反應將流感A/CA/07/2009 (pH1N1)捕獲到基底上,然后應用SERS抗體探針。在探針Ag增強下,通過SERS檢測到了低濃度的pH1N1,并且將pH1N1和其他類型流感病毒區分開來。這個方法有明顯的 ...
光在朝多方向散射,因而在光電探測器上檢測到的微弱光被系統的電子噪聲覆蓋。該紙再次以2Hz的正弦驅動,并作為模擬信號。圖5 Moku示波器測量的10 MHz弱信號我們再次使用Moku:示波器來查看光電探測器檢測到的10 MHz調制信號。圖5顯示了從光電探測器接收的漫反射信號。與鏡子的強反射不同,示波器上檢測到的信號與噪聲無法區分。但是,信號仍然存在,可以使用鎖相放大器進行恢復。首先,我們調整輸入端增益。在這種情況下,我們在前端選擇+48 dB的數字增益。該增益利用數字信號處理的方法增加了信號的強度。在此階段,信號和噪聲都增加,導致無SNR(信噪比)變化。圖6 為測量弱信號Moku鎖相放大器設置現 ...
從熔點管收集散射輻射。這種方法給出的校準精度優于1 波數。4) 氖發射線如果有標準的氖光源,Ne 發射線可用于在寬頻率范圍內獲得高頻校準。下圖顯示了使用 Ne 燈拍攝的光譜。下表列出了 Ne 頻率,這些頻率可用于校準分別通過 He-Ne 和 Kr 離子激光器激發獲得的拉曼光譜。您可以通過我們的官方網站了解更多共聚焦顯微拉曼光譜儀的相關產品信息,或直接來電咨詢4006-888-532。 ...
部物體反射或散射,部分光反饋會與激光器腔內光相混合,引起激光器的輸出功率、頻率發生變化,引起輸出的功率信號與傳統的雙光束干涉信號類似,所以被稱為SMI。由于反射物的不同位置和相對移動速度會引起不同的SMI干涉頻率,利用這種物理現象,如果事先做好標定和校準就可以實現對微小振動和位移的精確測量。您可以通過我們的官方網站了解更多的產品信息,或直接來電咨詢4006-888-532。 ...
個緩慢的中間散射過程改變動量,顯著降低光發射強度。然而,子帶間的光躍遷不依賴于導帶和價帶小值的相對動量,因此對Si/SiGe量子級聯發射體提出了理論建議。在中紅外和遠紅外波段,觀察到非極性SiGe異質結構在價帶和導帶的子帶間電致發光。對量子級聯增益材料進行處理以制備有用的發光器件的D1步是將增益介質限制在光波導中。這使得將發射的光引導成準直光束成為可能,并允許建立一個激光諧振器,這樣光可以耦合回增益介質。電介質材料通常沉積在溝槽中,引導注入電流到脊,然后整個脊通常涂上金,提供電接觸,并在脊產生光時幫助消除熱量。光從波導的分叉端發射出來,其活躍區域通常只有幾微米的尺寸。常用的光波導有兩種。脊波導 ...
自適應光學,散射或渾濁介質中的成像,雙光子/三光子顯微成像,光遺傳學,全息光鑷(HOT),脈沖整形,光學加密,量子計算,光通信,湍流模擬等領域。其新推出的HSP1K(1024x1024)SLM系列的高刷新速度、高損傷閾值、大通光孔面的特性十分適用于雙光子/多光子/鈣離子成像這一領域。圖1. Meadowlark 新推出 1024 x 1024 1K刷新率SLM二、雙光子/鈣離子成像技術介紹雙光子激發顯微鏡(Two-photon excitation microscopy)是一種熒光成像技術,可以對活體組織進行深度約1毫米的成像。它不同于傳統的熒光顯微鏡,其中激發波長短于發射波長,因為兩個激發光 ...
漫射裝置的光散射特性將傳輸的光線散布于照明空間,實現良好的照明效果。常見的有PC材料或PMMA材料,具有良好的透光性、漫射性和非常好的隔熱、隔音效果。圖2.光纖照明光路示意圖由此可見,相比于傳統的光導管傳導方式相比,光纖照明技術的原理和構造基本一致,主要區別在于傳導方式,而且隨著技術進步,光纖照明裝置還在逐漸增加自動追蹤、人工光源補償等功能,以適應不同場所的照明需求。結語:光導照明是一種比較新穎的建筑照明節能技術,一些大型建筑中為照明系統起到了分擔作用,其在一定的場合與傳統照明系統相比具有顯著優勢,建筑整個生命周期內的節能減排起到了很好的作用。雖然還有很多技術局限性,相信隨著技術的發展和成熟, ...
或 投遞簡歷至: hr@auniontech.com